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Abstract
The relation of supersymmetric quantum mechanics (SUSYQM) is discussed
with two other symmetry-based approaches: PT symmetry and a differential
realization of the su(1, 1) and su(2) algebra. It is demonstrated that PT
symmetry imposes conditions on the even and odd parts of the real and
imaginary components of the superpotential W(x), and these are expressed
in terms of a system of first-order linear differential equations, which is
homogeneous when the factorization energy is real and inhomogeneous when it
is complex. The formal solution of this system is presented for various special
cases as well as for the general case. It is shown that a trivial solution of this
system corresponds to the unbroken PT symmetry for the Scarf II potential.
The formalism of SUSYQM is also linked with that of the potential algebra
approach, and it is demonstrated that the J+ and J− ladder operators of some
su(1, 1) or su(2) algebras act on series of degenerate levels of different potentials
essentially in the same way as the A and A† shift operators of SUSYQM.
Examples are presented for su(1, 1) and su(2) potential algebras, as well as for
spectrum generating algebras of the same type. Possible generalizations of this
construction are also pointed out.

PACS numbers: 11.30.Pb, 11.30.Er, 03.65.Fd, 03.65.Ge

1. Introduction

Since its introduction about 20 years ago, supersymmetric quantum mechanics (SUSYQM)
has had a strong impact on various branches of physics. Besides its conceptual novelty that
offered a new symmetry-based perspective in analysing physical systems, it also stimulated
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the development of the technical machinery of mathematical physics. In most applications
of SUSYQM (super)symmetry manifests itself in the degeneracy of the energy spectra of
interrelated Hamiltonians. In the simplest and most widely used formulation of this approach,
i.e. in N = 2 SUSYQM, this clearly follows from a handful of simple relations, but this feature
characterizes all other generalizations of this model, including realizations in terms of larger
matrices, higher order SUSY operators, iterated SUSY transformations connecting phase-
equivalent potentials, multichannel SUSYQM, parafermionic SUSYQM, etc. For reviews on
these generalizations and on fundamental physical and mathematical concepts of SUSYQM,
we refer to the rich literature on the subject [1].

In the present contribution we focus on N = 2 SUSYQM only, and investigate its relation
with other symmetry-based approaches, such as PT -symmetric quantum mechanics and some
algebraic methods. To exemplify the relation of these symmetry concepts, we consider the
one-dimensional Schrödinger equation, with special attention to exactly solvable problems.

We start with recalling the essential formulae of N = 2 SUSYQM for later reference.
The ‘bosonic’ and ‘fermionic’ Hamiltonians forming the diagonal components of the 2 × 2
matrix SUSY Hamiltonian are factorized as

H(−) = A†A + ε H(+) = AA† + ε. (1)

For the sake of generality we included in (1) a factorization energy ε, which basically represents
a shift of the energy scale. Without it the ground-state energy of H(−) (and thus that of the
SUSY Hamiltonian) would be zero in the case of unbroken supersymmetry. The isospectrality
of H(−) and H(+) follows from (1), irrespective of the realization of the A and A† operators.
In order to construct a one-dimensional Schrödinger operator it is natural to choose these as
first-order linear differential operators,

A = d

dx
+ W(x) A† = − d

dx
+ W(x). (2)

The resulting ‘bosonic’ and ‘fermionic’ supersymmetric partner potentials are then

V (−)(x) = W 2(x) − dW

dx
+ ε V (+)(x) = W 2(x) +

dW

dx
+ ε (3)

where the W(x) superpotential is related to the ground-state wavefunction of H(−) as

W(x) = − d

dx
ln ψ

(−)
0 (x). (4)

This latter result follows from the requirement that the energy level corresponding to the
ground state of H(−) is missing from the spectrum of H(+). (We do not consider the case
of other realizations of N = 2 SUSYQM in which the superpotential is obtained from non-
physical solutions of the ‘bosonic’ Schrödinger equation.) The SUSY partner potentials are
then related by the formula

V+(x) = V−(x) − 2
d2

dx2
ln ψ

(−)
0 (x). (5)

In general the functional form of the SUSY partner potentials is different; however, for many
well-known potentials it is the same, with only some parameters differing in them. This
condition defines shape-invariant potentials [2] via the relation

V+(x; a0) − V−(x; a1) ≡ W 2(x; a0) + W ′(x; a0) − W 2(x; a1) + W ′(x; a1) = R(a1). (6)

The parameters a0 and a1 are connected by some simple (additive) function. Obviously, once
the functional form of the SUSY partner potentials is the same, the SUSY transformation
equation can be iterated and a whole sequence of potentials can be generated. These will be
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isospectral by construction, except that the lowest level is removed in each step. There are
altogether 12 shape-invariant potentials [3] (although some of them are mathematically the
same and they are treated as separate entities only for historical reasons) and they include
the most well-known textbook examples, such as the harmonic oscillator, Coulomb and
Morse potentials, together with various variants of the Pöschl–Teller, Scarf and Rosen–Morse
potentials. These potentials are easy to handle mathematically, so they represent ideal subjects
for analysing various symmetry concepts appearing in quantum mechanics. These potentials
have been classified following different principles based on the factorization method [4],
algebraic realizations [5], spectral structure [6] and variable transformations [3], but the
outcome was essentially the same in each case.

In what follows (in section 2) we first present a simple method to derive solvable (including
shape-invariant) potentials, then analyse the relation of SUSYQM with PT symmetry
(in section 3) and with some algebraic approaches (in section 4). Finally, a summary is
given (in section 5).

2. Solvable potentials from variable transformations

In this section we first present a simple transformation procedure [7] by which a rather general
class of exactly solvable potentials can be derived in a straightforward way. A generalization
of this method has been given in [8], where exact (but partly implicit) formulae have been
presented for the solution of the six-parameter Natanzon-class potentials. The common feature
of these potentials is that their solutions can be written in terms of hypergeometric or confluent
hypergeometric functions. The method we outline here is suitable to solve the Schrödinger
equation

d2ψ

dx2
+ (E − V (x))ψ(x) = 0 (7)

for such potentials. For this one assumes that the solutions are written as f (x)F (z(x)),
where F(z) is some special function of mathematical physics that satisfies the second-order
differential equation

d2F

dz2
+ Q(z)

dF

dz
+ R(z)F (z) = 0. (8)

The function z(x) then defines a variable transformation. Straightforward calculation shows
then that E − V (x) takes the form

E − V (x) = z′′′(x)

2z′(x)
− 3

4

(
z′′(x)

z′(x)

)2

+ (z′(x))2

(
R(z(x)) − 1

2

dQ

dz
− 1

4
Q2(z(x))

)
(9)

and the solutions can be written as

ψ(x) ∼ (z′(x))−
1
2 exp

(
1

2

∫ z(x)

Q(z) dz

)
F(z(x)). (10)

Note that besides the R(z) and Q(z) functions (which are known after we have chosen the
special function F(z)) equations (9) and (10) depend only on the z(x) function.

The next step is choosing z(x) in a meaningful way, i.e. such that it leads to a solvable
potential. For this we select on the right-hand side of (10) some term (or combination of
terms) that includes (z′(x))2 and equate it with a constant in order to account for E on the
left-hand side. This leads to a differential equation(

dz

dx

)2

φ(z) = C (11)
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where φ(x) is a function originating from Q(z) and R(z). The z(x) function can then
be determined by direct integration. The only remaining task is to redefine the potential
parameters such that the n principal quantum number appears only in the constant (energy)
term. Sometimes only the implicit x(z) function can be determined from (11), but the ‘implicit’
potentials derived this way are also exactly solvable, as any relevant quantity can be calculated
for them to any desired accuracy.

The most well-known potentials, the members of the shape-invariant class [2], are obtained
by considering a single term for φ(z) in (11), while the general Natanzon-class potentials are
obtained by taking a two- or three-term linear combination for φ(z). The resulting formulae
are relatively simple for shape-invariant potentials, while they might become impossible to
handle when a three-term expression is taken. The most well-known non-shape-invariant
Natanzon-class potentials (e.g., the Ginocchio [9, 10], the generalized Coulomb [11, 12] and
some others [13, 14]) have been obtained by considering a two-term combination in φ(z).
Obviously, most of these can be reduced to some shape-invariant potentials by tuning some
parameters to special values (e.g., to zero).

Finally, we note that equation (9) can be cast in a form familiar to SUSYQM:

E − V (x) = (z′(x))2R(z(x)) −
[(

f ′(x)

f (x)

)2

+
d

dx

(
f ′(x)

f (x)

)]
. (12)

We may notice that whenever R(z) vanishes for the ground state n = 0 (this is the case
when F(z) is an orthogonal polynomial, a special case of the hypergeometric or confluent
hypergeometric function), a superpotential can be defined as

W(x) = − d

dx
ln f (x) = −1

2
Q(z(x))z′(x) +

1

2

z′′(x)

z′(x)
. (13)

3. SUSY and PT symmetry

In quantum mechanics PT symmetry requires the invariance of a potential under the
simultaneous action of the P spatial and T time reflection operations (the latter essentially
being complex conjugation). For one-dimensional potentials of non-relativistic quantum
mechanics this invariance requires V ∗(−x) = V (x), therefore the real and imaginary
component of a PT -invariant potential has to be an even and odd function of x, respectively.
These potentials represent a rather peculiar class among complex potentials, since it was
found that their discrete energy eigenvalues can be real [15]. This is different from complex
potentials appearing, e.g., in nuclear physics imitating the absorption of particles in a nuclear
reaction, since the discrete energy eigenvalues were found to be complex in that case.

It soon turned out that PT symmetry is neither a necessary nor a sufficient condition
for having real energy eigenvalues in a complex potential. A typical feature appearing in
most PT -symmetric potentials was the pairwise merging of real energy eigenvalues and their
re-emergence as complex conjugate pairs as some potential parameter was tuned. At the
same time the corresponding solutions ceased to be eigenfunctions of the PT operator, so this
phenomenon was interpreted as the spontaneous breakdown of PT symmetry [15].

Besides the real energy eigenvalues there were further signs indicating thatPT -symmetric
potentials share some features with Hermitian problems. For example, with the modification
of the inner product the orthogonality of the energy eigenstates could be restored, and
also a modified continuity equation could be derived. However, the price to be paid was
that the pseudo-norm defined this way had an indefinite sign, questioning the probabilistic
interpretation of the wavefunctions. These unusual results have finally been interpreted in
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terms of pseudo-Hermitian Hamiltonians and anti-linear operators [16], as PT symmetry
represents a special case of these. With further modification of the inner product the positive
norm could also be restored [17].

Strangely enough the first examples of PT -symmetric potentials have been derived in
numerical studies, but soon the PT -symmetric versions of solvable potentials have also been
constructed. In a systematic study the PT -symmetric versions of shape-invariant potentials
have been constructed and conditions have been formulated for having real [18] or complex
[19] energy eigenvalues in their spectra, i.e. for having unbroken or spontaneously broken PT
symmetry. These results followed from adapting the methods discussed in section 2 to the
PT -symmetric setting.

An unusual feature characterizing these solvable potentials was the appearance of a second
set of solutions with the same principal quantum number n. These solutions could be identified
using the q = ±1 quasi-parity quantum number [20], which turns into conventional parity
when the PT -symmetric harmonic oscillator is reduced to its Hermitian version. It was also
found that the second set of solutions appears due to the less strict boundary conditions. In
some potentials these can be implemented by shifting formally the potential in the imaginary
direction via x → x + iε and thus eliminating the singularities, e.g., at x = 0. Here ε appears
as a constant of integration from (11).

Supersymmetric quantum mechanics has been combined with PT symmetry in various
other ways. Fundamental mathematical aspects have been discussed in [21, 16]; the reality
of the spectrum of PT -symmetric SUSY partners of real potentials has been pointed out
[22]; realizations in terms of second-order SUSYQM and parasupersymmetric quantum
mechanics have been constructed [23] and a quasi-parity-dependent factorization energy has
been introduced in order to account for the dual structure of the energy levels [24].

Here our aim is to analyse how the complex structure of the W(x) superpotential influences
the PT symmetry of the SUSY partner potentials (3). For this we separate the superpotential
into real and imaginary components and then split both of them into even and odd functions
of x:

W(x) = WR(x) + iWI(x) = WRe(x) + WRo(x) + iWIe(x) + iWIo(x). (14)

Separating the V (−)(x) potential in a similar fashion one gets

V (−)(x) = V
(−)

Re (x) + V
(−)

Ro (x) + iV (−)
Ie (x) + iV (−)

Io (x) (15)

with

V
(−)

Re (x) = W 2
Re(x) + W 2

Ro(x) − W 2
Ie(x) − W 2

Io(x) − W ′
Ro(x) + Re(ε)

V
(−)

Ro (x) = 2WRe(x)WRo(x) − 2WIe(x)WIo(x) − W ′
Re(x)

(16)
V

(−)
Ie (x) = 2WRe(x)WIe(x) + 2WRo(x)WIo(x) − W ′

Io(x) + Im(ε)

V
(−)

Io (x) = 2WRe(x)WIo(x) + 2WRo(x)WIe(x) − W ′
Ie(x).

The PT symmetry requirement V ∗(−x) = V (x) means for V (−)(x) that Re(V (−)(x)) has
to be an even function of x, while Im(V (−)(x)) has to be odd, and this leads to two coupled
first-order differential equations:

W ′
Re(x) − 2WRo(x)WRe(x) + 2WIe(x)WIo(x) = 0

(17)
W ′

Io(x) − 2WRe(x)WIe(x) − 2WRo(x)WIo(x) = Im(ε).

This can be considered as a system of inhomogeneous (or nonhomogeneous) linear first-
order differential equations for the functions WRe(x) and WIo(x), where the inhomogeneity is
represented by a constant in only one of the equations; furthermore, the coefficients appearing
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in the two equations are expressed in terms of the same two functions, WRo(x) and WIe(x).
Before discussing the general problem of solving (17), we first derive formulae analogous to
(16) for the SUSY partner V (+)(x):

V
(+)

Re (x) = W 2
Re(x) + W 2

Ro(x) − W 2
Ie(x) − W 2

Io(x) + W ′
Ro(x) + Re(ε)

V
(+)

Ro (x) = 4WRe(x)WRo(x) − 4WIe(x)WIo(x)
(18)

V
(+)

Ie (x) = 4WRe(x)WIe(x) + 4WRo(x)WIo(x) + 2Im(ε)

V
(+)

Io (x) = 2WRe(x)WIo(x) + 2WRo(x)WIe(x) + W ′
Ie(x).

Here we eliminated the derivatives from V
(+)

Ro (x) and V
(+)

Ie (x) using (17). Let us now discuss the
solution of (17) for increasingly complex situations and its implication on the PT symmetry
of V (+)(x).

(a) WRe(x) = WIo(x) = 0. This case represents a trivial solution, and it necessarily leads
to Im(ε) = 0, reducing (17) to a homogeneous system of differential equations. It is
straightforward to prove that in this case V (+)(x) is also PT -symmetric.

(b) WIo(x) = 0,WRe(x) �= 0. In this case the integration of (17) is a straightforward task,
leading to

WRe(x) = C exp

(
2
∫ x

0
WRo(x

′) dx ′
)

WIe(x) = − Im(ε)

2
W−1

Re (x) (19)

where we have already taken into account through the boundary conditions the parity
requirement for WRe(x). It can be proved that in this case the imaginary component of
V (+)(x) is odd; however, its real component does not have definite parity, therefore the
SUSY partner is not PT -symmetric.

(c) WRe(x) = 0,WIo(x) �= 0. Here the solution of (17) becomes

WIo(x) = Im(ε) exp

(
2
∫ x

0
WRo(x

′) dx ′
)∫ x

0

[
exp

(
−2

∫ x ′

0
WRo(x

′′) dx ′′
)]

dx ′

WIe(x) = 0

(20)

where we have again considered appropriate boundary conditions rendering WIo(x) to an
odd function of x. In this case V (−)(x) is an even real function (a special case of PT
symmetry), while its SUSY partner, V (+)(x), is an even imaginary function, so it cannot
be PT -symmetric.

(d) The general case. The general solution of (17) can be given in the following form [25]:

WRe(x) = exp

(
2
∫ x

0
WRo(x

′) dx ′
)

cos

(
−2

∫ x

0
WIe(x

′) dx ′
)

+ Im(ε)

∫ x

0
exp

(
2
∫ x

s

WRo(x
′) dx ′

)
sin

(
−2

∫ x

s

WIe(x
′) dx ′

)
ds

(21)

WIo(x) = −exp

(
2
∫ x

0
WRo(x

′) dx ′
)

sin

(
−2

∫ x

0
WIe(x

′) dx ′
)

+ Im(ε)

∫ x

0
exp

(
2
∫ x

s

WRo(x
′) dx ′

)
cos

(
−2

∫ x

s

WIe(x
′) dx ′

)
ds.

Now WRe(x) is indeed an even function of x, while WIo(x) is odd. The SUSY partner
V (+)(x) does not have PT symmetry in this case in general.
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Note that taking a real factorization energy ε which turns (17) into a homogeneous system
reduces the complexity of the solutions in all four cases. Im(ε) typically appears in the
imaginary components of the superpotential. In case (d) it also appears in WRe(x), and when
it is zero, WRe(x) and WIo(x) become proportional to each other:

WRe(x) = t (x)WIo(x) (22)

t (x) = cot

(
2
∫ x

WIe(x
′) dx ′

)
. (23)

This t (x) function can also be obtained in a different way, when one derives a particular
solution of the homogeneous version of (17) by substituting (22) into it.

Although the formal solution of (17) seems a simple task, one might face a number of
technical difficulties in evaluating the formulae for concrete examples. So here we present an
example in which the validity of (17) is proved directly. The PT -symmetric Scarf II potential
(which is independent of q due to q2 = 1) and its SUSY partner are [24]

V (−)(x) = − 1

cosh2 x

[(
qα + β

2

)2

+

(
qα − β

2

)2

− 1

4

]
+

2i sinh x

cosh2 x

(
β + qα

2

) (
β − qα

2

)

V (+)
q (x) = − 1

cosh2 x

[(
qα + β + 2

2

)2

+

(
qα − β

2

)2

− 1

4

]
(24)

+
2i sinh x

cosh2 x

(
β + qα + 2

2

)(
β − qα

2

)

where we have used the factorization energy ε = εq = −(qα + β + 1)2/4, while the
corresponding superpotential is written as

W(q)(x) = −1

2
(qα + β + 1) tanh x − i

2
(β − qα)

1

cosh x
. (25)

We find that for real α, WRe(x) = WIo(x) = 0 holds, and the factorization energy is real,
corresponding to the unbroken PT symmetry of both V (−)(x) and V (+)

q (x). Furthermore,
when α is imaginary, we get the inhomogeneous system of equations (17) with

WRe(x) = iqα

2

1

cosh x
WRo(x) = −β + 1

2
tanh x

(26)
WIe(x) = − β

2 cosh x
WIo(x) = iqα

2
tanh x.

In this case, which corresponds to the breakdown of PT symmetry (spontaneous for V (−)(x)

and manifest for V (+)
q (x)), the imaginary component of the factorization energy appearing in

(17) is Im(ε) = iqα(β + 1)/2 in agreement with previous results [24].
We note here that the PT -symmetric Scarf II potential can also be written in a more

general form by using the imaginary coordinate shift x → x + iε, but this would not change
the conclusions, and only would make the separation of the real and imaginary components
more involved technically.

We have seen that for the most well-known PT -symmetric potentials unbroken PT
symmetry occurs for the trivial WRe(x) = WIo(x) = 0 solutions of (17), which reduce to
a homogeneous system of differential equations. The formulae presented above, however,
allow more general construction of W(x) superpotentials leading to a PT -symmetric V (−)(x)

potential, and a generally non-PT -symmetric SUSY partner. One interesting question is
whether there are any examples for which a non-trivial solution of the homogeneous equation
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is obtained (this is the case of a real factorization energy), and also what one can find out about
the PT symmetry of V (+)(x).

Another important point is that the general construction of solving equation (17) works
for analytically and numerically solvable potentials too. So it is possible to generate potentials
which are PT -symmetric by construction by selecting some WRo(x) and WIe(x) functions and
deriving from them the full superpotential. It would then be an interesting task to investigate
situations in which the PT symmetry of the V (−)(x) potential is intact or is spontaneously
broken, and also to study how this affects the PT symmetry of the SUSY partners. This would
be an interesting task even if the solutions cannot be determined in an explicit form (apart
from the ground state of V (−)(x), which is determined by the W(x) superpotential).

4. SUSYQM and algebraic approaches

Algebraic constructions have been used in the analysis of the Schrödinger equation and
its solutions since the formulation of quantum mechanics. In contrast with SUSYQM-based
methods, which can equally be applied to exactly and numerically solvable problems, algebraic
approaches generally focus on exactly solvable problems, as closed analytic expressions are
essential to formulate the machinery of group theory.

A common feature of algebraic approaches is that the eigenstates of some potentials serve
as a basis for the irreducible representation of certain groups, so the generators of this group
ladder between the solutions. Depending on the nature of these connections one can talk about
symmetry (or degeneracy), spectrum generating, dynamical or potential algebras, for example
[26, 27]. In the first case the ladder operators connect degenerate levels, and the Hamiltonian
commutes with the elements of the algebra, so it has a symmetry defined by the corresponding
group. In the second case the elements of the algebra ladder along eigenstates belonging to
different energies, so they ‘generate’ the energy spectrum. In some cases all the states of
a system can be accommodated in a single irreducible representation of some group, which
contains the symmetry and spectrum generating group as subgroups. This defines a dynamical
group. It has to be mentioned though that in one-dimensional quantum mechanical potentials
the degeneracy of levels cannot happen, except when one considers a radial problem in which
eigenstates can occur with the same energy but with different orbital angular momentum l.
This is the case with the (three-dimensional) Coulomb and harmonic oscillator potentials,
which have so(4, 2) [28] and mp(6) [29] as a dynamical group, respectively. Potential algebras
are somewhat similar to symmetry algebras in the sense that their elements connect eigenstates
with the same energy; however, these states are eigenstates of different potentials, i.e. potentials
of the same type, but with different coupling coefficients. Depending on whether the
series of degenerate levels in question is finite or infinite, the potential algebra is compact
or non-compact, since the discrete unitary irreducible representations of the corresponding
groups are finite and infinite dimensional in the two cases, respectively. Non-compact potential
algebras also have continuous unitary irreducible representations, which can be associated with
scattering states [27].

From the possible algebraic approaches here we consider a particular differential
realization of the su(1, 1) algebra (and its compact counterpart su(2)), because this can be
related to the formalism of SUSYQM. Let us consider the su(1, 1) ∼ so(2, 1) algebra defined
by the commutation relations

[Jz, J±] = ±J± [J+, J−] = −2Jz (27)
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and construct the generators as first-order differential operators of the type

J± = e±iφ

(
±h(x)

∂

∂x
± g(x) + k(x)Jz + c(x)

)
Jz = −i

∂

∂φ
(28)

where the four functions appearing in (28) will be defined later. Let us also write the basis
states in the form

〈x|jm〉 = �jm(x, φ) = eimφψjm(x) (29)

where ψjm(x) is the physical solution of a Schrödinger equation, φ is an auxiliary phase
variable, while j and m are the labels of the irreducible representations of the corresponding
group SU(1, 1). These latter indices have to satisfy the eigenvalue equation for the Casimir
operator and Jz,

C2|jm〉 ≡ (−J+J− + J 2
z − Jz

)|jm〉 = j (j + 1)|jm〉 (30)

Jz|jm〉 = m|jm〉. (31)

In order to satisfy the commutation relations (27) the following two conditions have to be
fulfilled by three of the four undefined functions appearing in (28):

k2(x) − h(x)
dk

dx
= 1 c(x)k(x) − h(x)

dc

dx
= 0. (32)

Equation (30) is a second-order differential equation, and our aim is to associate it with the
one-dimensional Schrödinger equation. For this the linear derivative term has to be eliminated,
which leads to a third relation between the functions appearing in (28):

g(x) = 1

2

(
k(x) − dh

dx

)
. (33)

The eigenvalue equation (30) is then similar to a Schrödinger equation:

[C2 − j (j + 1)]|jm〉 = −h2

[
− d2

dx2
−

(
h′

2h

)2

+

(
k

2h

)2

− k′

2h
+

h′′

2h
(34)

+
c2

h2
+

2ck

h2
m +

1 − k2

h2
m2 +

j (j + 1)

h2

]
|jm〉 = 0.

This equation contains the j and m labels, which will appear in the potential parameters and
also in the energy expression. Imposing the three conditions in (32) and (33) on the four
functions leaves us with only one independent function, and we can choose this to be h(x)

without loss of generality.
We may notice that in deriving (34) from (30) we essentially proceeded along the same

route as in section 2, where we started with the second-order differential equation (8),
performed variable and similarity transformations and finally arrived at the Schrödinger
equation (7) that contains only one unknown function. The variable transformation (controlled
in section 2 by z(x)) can be defined in this case as

h(x) → h(z) = h(x(z))
dz

dx
ψjm(x) → ψjm(x(z)) (35)

while the similarity transformation (accounted for by f (x) in section 2) is

g(x) → g(x) + h(x)
d

dx
ln v(x) ψjm(x) → v−1(x)ψjm(x). (36)

This construction has been applied to the shape-invariant potentials [30] and it was shown
that most of them accommodate a spectrum generating algebra, a potential algebra or both.
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Figure 1. Schematic illustration of the bound-state spectrum in the case of a non-compact
su(1, 1) (panel a) and a compact su(2) (panel b) potential algebra. In the former case there is an
infinite series of degenerate levels belonging to different values of m, defining different potential
strengths, but all the potentials have a finite number of bound states. In the latter case the number
of bound states is infinite in each potential, but there is only a finite number of levels belonging to
each energy. The energy eigenvalues depend on the j (j + 1) eigenvalue of the Casimir invariant.

Exceptions were potentials that have expressions of the type (n + c)−2 in their bound-state
energy formula. This was the case with the Coulomb (type LII in the notation of [3], and F in
[4]) potential and the general case of the Rosen–Morse and Eckart potentials (belonging to the
PII [3] or E [4] type). In all other cases, n = j + m appeared in linear or quadratic expressions
as expected from (34).

The potential and spectrum generating algebras appeared either as the compact su(1, 1)
or as the non-compact su(2). It is easy to see from the construction that a transition between
these two algebras can be generated by considering the transformation

[h, g, k, c] ↔ [ih, ig, ik, ic]. (37)

Potential algebras have been recovered in [30] for two classes of shape-invariant potentials:
the LIII class (i.e. the Morse potential) and the PI class which contains five individual potentials.
A characteristic feature of these potentials is that the h(x) function in (28) is a constant, and
the differential form of the Casimir operator (34) is proportional to the Schrödinger equation
up to a constant. For the same reason the J+ and J− generators of these potential algebras
are practically identical with the A† and A ladder operators of SUSYQM in the sense that
they have the same effect on the solutions [30]. This was confirmed later also in [31, 32].
These potentials belonging to the PI and LIII shape-invariant class correspond to type A and
B potentials in the factorization method [4] and a study based on the Lie theory of special
functions [5]. See also [3] for the details.

We illustrate the situation in figure 1, where the case of an su(1, 1) and an su(2)
potential algebra is presented schematically. As concrete examples we consider the case
of the symmetric Pöschl–Teller potential, which appears as the special case of several PI and
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PII class potentials. Taking

J± = e±iφ

[
± ∂

∂x
− tanh x

(
Jz ± 1

2

)]
(38)

we obtain su(1, 1) generators laddering along the degenerate levels of an infinite sequence of
potentials Vm(x) = −(

m2 − 1
4

)
cosh−2 x as on the left panel of figure 1. The energies depend

on the j representation label as Ej = −(j + 1
2 )2. The situation on the right panel can be

obtained by taking the (37) transformation, which changes (38) to

J± = e±iφ

[
∓ ∂

∂y
− tan y

(
Jz ± 1

2

)]
(39)

which also means replacing x with y = ix as the coordinate. This transformation changes the
potential to Vm(y) = (

m2 − 1
4

)
cos−2 y and the energies to Ej = (

j + 1
2

)2
.

With the h(x) �= const choice other types of algebras can be obtained, among them
spectrum generating ones for the LI, HI classes (i.e. the harmonic oscillators in three and
one dimensions) and for special (symmetric) cases of PI and PII potentials. In this case
〈C2〉 = j (j +1) will be related to the potential strength and 〈Jz〉 = m will appear in the energy
eigenvalues. An example is the symmetric Pöschl–Teller potential, which is now written in
the form Vj (x) = −j (j + 1) cosh−2 x with energy eigenvalues Em = −m2, which is obtained
using the su(2) operators,

J± = ie±iφ cosh x

(
± ∂

∂x
+ tanh xJz

)
. (40)

In contrast with (38) these su(2) operators ladder along the finite number levels forming finite
‘towers’ on the left panel of figure 1. A transformation to the trigonometric version of this
potential and to an su(1, 1) spectrum generating algebra can be performed as above. This
corresponds to the right panel of figure 1. In conclusion, we have seen that both an su(1, 1) and
an su(2) algebra can be associated with the symmetric Pöschl–Teller potential, and their role
depends on whether we consider the hyperbolic or the trigonometric version of this potential.
It is notable that all these algebras can be obtained [33] as special cases from an algebraic
description of the Ginocchio potential [9].

5. Summary

We have discussed the relation of supersymmetric quantum mechanics with two other
symmetry concepts: PT symmetry and potential algebras. As all symmetries, these also
have strong impact on the energy spectrum of quantum mechanical systems.

Combining the PT symmetry requirement with N = 2 SUSYQM led to relations
between the real and imaginary components of the even and odd parts of the superpotential
W(x) expressed in terms of a system of inhomogeneous first-order differential equations.
We presented methods to solve this system of differential equations and analysed the PT
symmetry of the V (+)(x) SUSY partner potential. It was found that when the PT symmetry
of V (−)(x) is unbroken, the system of differential equations reduces to a homogeneous form
(as the factorization energy ε has to be real), and the trivial WRe = WIo solutions apply, i.e.
the superpotential has odd real and even imaginary components. In this case the V (+)(x)

SUSY partner potential also exhibits PT symmetry. This was also demonstrated by the
example of the PT -symmetric Scarf II potential. When the PT symmetry of this potential
is spontaneously broken, direct calculation showed that its SUSY partner ceases to be PT -
symmetric. One expects, however, that further solutions of the system of differential equations
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formulated for the components of the superpotential might be possible. It would be interesting,
for example, to find the solutions of the homogeneous system (real factorization energy) with
a V (+)(x) potential that does not possess PT symmetry as in the case of the Scarf II potential.
This would be indicative of the mechanism of the spontaneous breakdown of PT symmetry,
which has been studied analytically only in the case of some solvable potentials [34–38]. The
analysis of the components of the superpotential and of the SUSY partner potentials can also
be helpful in finding relations between isospectral real and PT -symmetric potentials.

We also analysed a particular realization of the non-compact su(1, 1) algebra and its
compact counterpart su(2). We used first-order differential operators to construct potential
and spectrum generating algebras. We showed that potential algebras are tightly related with
the formalism of SUSYQM, as their J+ and J− ladder operators acted in the same way as the
A and A† operators of SUSYQM. We presented examples for both su(1, 1) and su(2) potential
algebras, which connect infinite and finite number of degenerate levels, respectively. We used
the hyperbolic and trigonometric versions of the Pöschl–Teller potential to demonstrate how
the compact and non-compact potential algebras can be transformed into each other, and also
presented su(1, 1) and su(2) spectrum generating algebras for the same systems.

The relation of PT symmetry and potential algebras has been discussed elsewhere
[39, 40], and here we note only that in order to accommodate the two sets of
states in PT -symmetric potentials (distinguished by the q quasi-parity quantum number),
the su(1, 1) ∼ so(2, 1) algebra has to be extended to so(2, 2) ∼ so(2, 1) ⊕ so(2, 1). In
terms of SUSYQM the duplication of potential algebras corresponds to the duplication of
superpotentials (Wq(x)) and SUSY ladder operators (Aq and A

†
q).
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